# **Optics of the Human Eye**

David Atchison

School of Optometry & Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane, Australia



#### Optical Structure – cornea and sclera

- The outer layer of the eye is in two parts: the anterior cornea and the posterior sclera
- The cornea is transparent and approximately spherical with an outer radius of curvature of about 8 mm
- The sclera is a dense, white, opaque fibrous tissue which is approximately spherical with a radius of curvature of about 12 mm











#### **Optical Structure and Image Formation**

Principles of image formation by the eye are same as for manmade optical systems

- Light enters the eye through the cornea and is refracted by the cornea and lens. The cornea has the greater power.
- The lens shape can be altered to change its power when the eye needs to focus at different distances (accommodation).
- The beam diameter is controlled by the iris, the aperture stop of the system. The iris opening is called the pupil. The aperture stop is a very important component of an optical system, affecting a wide range of optical processes.





# Optical Structure and Image Formation - optic disc and blind spot

- The optic nerve leaves the eye at the optic disc. This region is blind.
- The optic disc is about 5° wide and 7° high and is about 15° nasal to the fovea
- The name to the corresponding region in the visual field is the blind spot



## Optical Structure and Image Formation - power of the eye

One of the most important properties of any optical system is its equivalent power

- Measure of the ability of the system to bend or deviate rays of light
- The higher the power, the greater is the ability to deviate rays
- Equivalent power *F* of the eye is given by  $F = n^2/P^2F^2$

P' is the second principal point, just inside the eye

F' is the second focal point. Light entering the eye from the distance is imaged at F'

*n*' is the refractive index of the vitreous

The average power of the eye is 60 m<sup>-1</sup> or 60 dioptres (D)

# Optical Structure and Image Formation - refractive error Refractive error more important than the equivalent power Can be regarded as an error in the length due to a mismatch with the equivalent power If the length is too great for its power, the image is formed in front of the retina and this results in *myopia*If the length is too small, the image is formed behind the retina and this results in *hypermetropia*

# **Optical Structure and Image Formation**

- axes

- The eye has a number of axes. Two important ones are the optical axis and the visual axis
- Optical axis: Surfaces centres of curvatures are not co-linear, there is no true optical axis – taken as the line of best fit through these points
- Visual axis is one of the lines joining the object of interest and the centre of the fovea



# **Optical Structure and Image Formation** - field of vision

- Temporal field: about 105°
- Nasal field: only about 60° because of the combination of the nose and the limited extent of the temporal retina
- Superiorly and inferiorly: about 90°, except for anatomical limitations



### Optical Structure and Image Formation - binocular vision

- The use of two eyes provides better perception of the external world than one eye alone
- Two eyes laterally displaced by ~60 mm give the potential for a 3-D view of the world, including the perception of depth known as stereopsis
- The total field of vision in the horizontal plane is about 210°
- Binocular overlap is 120°



#### **Refracting Components**

Refracting components are cornea and lens

- Elements must be transparent and have appropriate curvatures and refractive indices
- Refraction takes place at four surfaces the anterior and posterior surfaces of the cornea and lens
- There is also continuous refraction within the lens

#### Refracting Components - cornea

- 40 D (2/3rds power) provided by the cornea
- Supports the tear film and has a number of layers
- $\sim 0.5$  mm thick in centre
- Posterior surface is more curved than the anterior surface
- The anterior surface has greater power (48 D) than the posterior surface (-8 D) because of low refractive index difference between the cornea and aqueous



#### **Refracting Components** – cornea (cont.) Frequently curvature is different in different meridians (toric) In general, the radius of curvature increases with distance from the surface apex - aspheric • Corneal surface asphericity influences higher order aberrations (subtle optical defects) Axial Diopters 43.60 43.50 43.40 43 30 43.20 43.10 43.00 42.90 42.80 42.70 12.60 12.50 42.40 42.30 SIM K'S 43.61 D @ 103° 42.82 D @ 13° 42.20 0.10 D

#### **Refracting Components**

#### - lens

- Lens bulk is a mass of cellular tissue of non-uniform refractive index, contained within an elastic capsule
- Do not yet have an accurate measure of refractive index distribution
- Most cells are long fibres which have lost their nuclei
- Lens grows continuously with age, with new fibres laid over the older fibres
- Anterior radius of curvature is about 12 mm
- The posterior radius of curvature is about -6mm (note negative sign)
- Changes in shape with accommodation and aging, particularly at the front surface



# Refracting Components – lens (cont.)

- In accommodation, when the eye changes focus from distant to closer objects:
  - ciliary muscle contracts and causes the zonules supporting the lens to relax
  - This allows the lens to become more rounded under the influence of its elastic capsule, thickening at the centre and increasing the surface curvatures, particularly the anterior surface
  - The anterior chamber depth decreases
- In accommodation, when the eye changes focus from close to distance objects:
  - reverse process occurs











#### **Refractive Anomalies** – myopia and hypermetropia

# Distribution of myopia and hypermetropia in different studies

- These are represented by the powers of the lenses that correct them, with myopia having negative numbers and hypermetropia having positive numbers
- For adult populations, the mean refraction is slightly hypermetropic and the distributions are steeper than normal distributions
- The distributions are skewed bigger tails in the myopic direction than in the hypermetropic direction





#### **Refractive Anomalies**

- astigmatism The power of the eye changes with meridian

- Usually due to one or more refracting surfaces having a toroidal shape. May be due to surface displacement or tilting. We usually relate this to the error in the principal meridians of maximum and minimum power.
- Astigmatism may be related to myopia and hypermetropia. Hence we may have myopic astigmatism, hypermetropic astigmatism, and mixed astigmatism.



#### **Ageing Eye**

- Many of the optical changes taking place in the adult eye produce progressive reduction in visual performance. Some of these can be considered as pathological
- The most dramatic age-related changes take place in the lens. Its shape, size and mass alter markedly, its ability to vary its shape diminishes and its light transmission reduces considerably. In unaccommodated state:
  - centre thickness ↑ at 0.024 mm/year
  - Anterior surface radius of curvature ↓ at 0.044 mm/year



















#### Retina (cont.)

The receptor types are the rods and the cones

- The rods associated with vision at low light levels. They reach their maximum density at about 20° from the fovea
- Cones are associated with vision at higher light levels, including colour vision.
   Predominate in the fovea which is about 1.5 mm across.
   Their density is a maximum at the pit at the foveola in the middle of the fovea (about 5° from best fit optical axis).



#### Optical Structure and Image Formation - typical ocular dimensions

Dimensions of the eye vary greatly between individuals

- Some depend upon gender, accommodation and age
- Representative results are shown here.
- Starred values depend upon accommodation:
  - anterior chamber depth lens thickness
  - radii of curvatures of lens surfaces
- Average data have been used to construct schematic eyes.

